小學數學小故事
『壹』 數學小故事20字五個
數學小故事——找零錢
一家手杖店來了一個顧客,買了30元一根的手杖.他拿出一張元的票子,要求找錢.
店裡正巧沒有零錢,店主到鄰居處把50元的票子換成零錢,給了顧客20元的找頭.
顧客剛走,鄰居慌慌張張地奔來,說這張50元的票子是假的.店主不得已向鄰居賠償了50元.隨後出門去追那個顧客,並把他抓住說:「你這個騙子,我賠給鄰居50元,又給你找頭20元,你又拿走了一根手杖,你得賠償我100元的損失.」
這個顧客卻說:「一根手杖的費用就是鄰居給你換零錢時你留下的30元,因此我只拿了你70元.」
請你計算一下,手杖店真正的損失是多少?這里要補充一下,手杖的成本是20元.如果這個顧客行騙成功,那麼共騙得了多少錢?
2、故事:猴子撈帽
一群猴子在井旁玩,一陣風將一隻猴子的帽子吹到井裡,他招呼來18個小夥伴,從井上方的松上一個接一個去撈帽子,有4隻猴子沒有上樹,就撈著了帽子,問:是幾只猴子上樹下井接在一起把帽子撈上來的?
3、故事:蝸牛何時爬上井?
一隻蝸牛不小心掉進了一隻枯井裡,它趴在井底上哭起來,一隻癩蛤蟆過來,翁聲翁氣的對蝸牛說:「別哭了,小兄弟,哭也沒用,這井壁又高又滑,掉到這里只能在這里生活了。我已經在這里生活了許多年了。蝸牛望著又老又丑的癩蛤蟆,心裡想:「井外的世界多美呀!我決不能像它那樣生活在又黑又冷的井底里。」蝸牛對癩蛤蟆說:「癩大叔,我不能生活在這里,我一定要爬出去,請問這口井有多深?」「哈哈哈……,真是笑話,這井有10米深,你小小年紀。又背負著這么重的殼,怎麼能爬出去呢?」「我不怕苦不怕累,每天爬一段,總能爬出去!」第二天,蝸牛吃得飽飽的,開始順著井壁往上爬了,它不停的爬呀爬,到了傍晚,終於爬了5米,蝸牛特別高興,心想:「照這樣的速度,明天傍晚我就可以爬出去了。」想著想著不知不覺睡著了,早上,蝸牛被一陣呼嚕聲吵醒了,一看,原來是癩大叔還以睡覺,他心裡一驚:「我怎麼離井底這么近?」原來,蝸牛睡著以後,從井壁上滑下來4米,蝸牛嘆了一口氣,咬咬牙,又開始往上爬,到傍晚又往上爬了5米,可晚上,蝸牛又滑下來4米,就這樣,爬呀爬,滑呀滑,最後堅強的蝸牛終於爬上了井台。聰明的小朋友你能猜出來蝸牛用了多少天才爬上井台的嗎?
『貳』 簡短的數字小故事大全
1、數學小故事——找零錢
一家手杖店來了一個顧客,買了30元一根的手杖.他拿出一版張50元的票子,要求找錢權.
店裡正巧沒有零錢,店主到鄰居處把50元的票子換成零錢,給了顧客20元的找頭.
顧客剛走,鄰居慌慌張張地奔來,說這張50元的票子是假的.店主不得已向鄰居賠償了50元.隨後出門去追那個顧客,並把他抓住說:「你這個騙子,我賠給鄰居50元,又給你找頭20元,你又拿走了一根手杖,你得賠償我100元的損失.」
這個顧客卻說:「一根手杖的費用就是鄰居給你換零錢時你留下的30元,因此我只拿了你70元.」
請你計算一下,手杖店真正的損失是多少?這里要補充一下,手杖的成本是20元.如果這個顧客行騙成功,那麼共騙得了多少錢?
2、故事:猴子撈帽
一群猴子在井旁玩,一陣風將一隻猴子的帽子吹到井裡,他招呼來18個小夥伴,從井上方的松上一個接一個去撈帽子,有4隻猴子沒有上樹,就撈著了帽子,問:是幾只猴子上樹下井接在一起把帽子撈上來的?
『叄』 關於數學的一些有趣的小故事
關於數學的一些有趣的小故事有:
1、多少只襪子才能配成一對
關於多少只襪子能配成對的問題,答案並非兩只。為什麼會這樣呢?那是因為在冬季黑蒙蒙的早上,如果從裝著黑色和藍色襪子的抽屜里拿出兩只,它們或許始終都無法配成一對。雖然不是太幸運,但是如果從抽屜里拿出3隻襪子,肯定有一雙顏色是一樣的。
不管成對的那雙襪子是黑色還是藍色,最終都會有一雙顏色一樣的。如此說來,只要藉助一隻額外的襪子,數學規則就能戰勝墨菲法則。通過上述情況可以得出,「多少只襪子能配成一對」的答案是3隻。
當然只有當襪子是兩種顏色時,這種情況才成立。如果抽屜里有3種顏色的襪子,例如藍色、黑色和白色襪子,你要想拿出一雙顏色一樣的,至少必須取出4隻襪子。
如果抽屜里有10種不同顏色的襪子,你就必須拿出11隻。根據上述情況總結出來的數學規則是:如果你有N種類型的襪子,你必須取出N+1隻,才能確保有一雙完全一樣的。
2、燃繩計時
一根繩子,從一端開始燃燒,燒完需要1小時。現在要在不看錶的情況下,僅藉助這根繩子和一盒火柴測量出半小時的時間。你可能認為這很容易,只要在繩子中間做個標記,然後測量出這根繩子燃燒完一半所用的時間就行了。
然而不幸的是,這根繩子並不均勻,有些地方比較粗,有些地方卻很細,因此這根繩子不同地方的燃燒率不同。也許其中一半繩子燃燒完僅需5分鍾,而另一半燃燒完卻需要55分鍾。
面對這種情況,似乎想利用上面的繩子准確測出30分鍾時間根本不可能,但是事實並非如此,因此大家可以利用一種創新方法解決上述問題,這種方法是同時從繩子兩頭點火。繩子燃燒完所用的時間一定是30分鍾。
3、火車相向而行問題
兩輛火車沿相同軌道相向而行,每輛火車的時速都是50英里。兩車相距100英里時,一隻蒼蠅以每小時60英里的速度從火車A開始向火車B方向飛行。
它與火車B相遇後,馬上掉頭向火車A飛行,如此反復,直到兩輛火車相撞在一起,把這只蒼蠅壓得粉碎。蒼蠅在被壓碎前一共飛行了多遠?
我們知道兩車相距100英里,每輛車的時速都是50英里。這說明每輛車行駛50英里,即一小時後兩車相撞。在火車出發到相撞的這一段時間,蒼蠅一直以每小時60英里的速度飛行,因此在兩車相撞時,蒼蠅飛行了60英里。
不管蒼蠅是沿直線飛行,還是沿」z」型線路飛行,或者在空中翻滾著飛行,其結果都一樣。
4、擲硬幣並非最公平
拋硬幣是做決定時普遍使用的一種方法。人們認為這種方法對當事人雙方都很公平。因為他們認為錢幣落下後正面朝上和反面朝上的概率都一樣,都是50%。但是有趣的是,這種非常受歡迎的想法並不正確。
首先,雖然硬幣落地時立在地上的可能性非常小,但是這種可能性是存在的。其次,即使我們排除了這種很小的可能性,測試結果也顯示,如果你按常規方法拋硬幣,即用大拇指輕彈,開始拋時硬幣朝上的一面在落地時仍朝上的可能性大約是51%。
之所以會發生上述情況,是因為在用大拇指輕彈時,有些時候錢幣不會發生翻轉,它只會像一個顫抖的飛碟那樣上升,然後下降。
如果下次你要選出將要拋錢幣的人手上的錢幣在落地後哪面會朝上,你應該先看一看哪面朝上,這樣你猜對的概率要高一些。但是如果那個人是握起錢幣,又把拳頭調了另一方向,那麼,你就應該選擇與開始時相反的一面。
5、同一天過生日的概率
假設你在參加一個由50人組成的婚禮,有人或許會問:我想知道這里兩個人的生日一樣的概率是多少?此處的一樣指的是同一天生日,如5月5日,並非指出生時間完全相同。」
也許大部分人都認為這個概率非常小,他們可能會設法進行計算,猜想這個概率可能是七分之一。然而正確答案是,大約有兩名生日是同一天的客人參加這個婚禮。
如果這群人的生日均勻地分布在日歷的任何時候,兩個人擁有相同生日的概率是97%。換句話說,你必須參加30場這種規模的聚會,才能發現一場沒有賓客出生日期相同的聚會。
人們對此感到吃驚的原因之一是,他們對兩個特定的人擁有相同的出生時間和任意兩個人擁有相同生日的概率問題感到困惑不解。兩個特定的人擁有相同出生時間的概率是三百六十五分之一,回答這個問題的關鍵是該群體的大小。
隨著人數增加,兩個人擁有相同生日的概率會更高。因此在10人一組的團隊中,兩個人擁有相同生日的概率大約是12%。在50人的聚會中,這個概率大約是97%。
然而,只有人數升至366人(其中有一人可能在2月29日出生)時,你才能確定這個群體中一定有兩個人的生日是同一天。
6、唐僧師徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高興興回來。師父唐僧問:你們每人各摘回多少個桃子?
八戒憨笑著說:師父,我來考考你。我們每人摘的一樣多,我筐里的桃子不到100個,如果3個3個地數,數到最後還剩1個。你算算,我們每人摘了多少個?
沙僧神秘地說:師父,我也來考考你。我筐里的桃子,如果4個4個地數,數到最後還剩1個。你算算,我們每人摘了多少個?
悟空笑眯眯地說:師父,我也來考考你。我筐里的桃子,如果5個5個地數,數到最後還剩1個。你算算,我們每人摘多少個?
唐僧很快說出他們每人摘桃子的個數。你知道他們每人摘多少個桃子嗎?
7、唐僧取經
一天,唐僧想考考三個徒弟的數學水平,於是他把徒弟們叫到面前,說:「徒兒們,現在我在地上寫3個數,你們誰能准確讀出來,我就把真經傳給他。」
唐僧首先寫出:23456。豬八戒迫不及待地說:「這個讀二三四五六!」唐僧搖了搖頭,說:「八戒,多位數的讀法是有規律的。
每個數字從右到左依次為個位、十位、百位、千位和萬位。只要從左到右把每個數字讀出來,並在後面加上萬、千、百、十就可以了,只是需要注意,最後一個數字不要讀『個』。所以,23456讀作二萬三千四百五十六。」
唐僧又寫出:130567。孫悟空馬上說:「這太容易了,讀作十三萬零千五百六十七。」唐僧又搖了搖頭,說:「遇到0,要特別注意,當一串數中間有0時,只要讀零就可以了,它後面的數位不要讀出來。所以這個數應該讀作十三萬零五百六十七。」
第三個數是120034。沙和尚想了想說:「應該讀作十二萬零零三十四。」唐僧嘆了口氣,說:「如果一串數中有連續的幾個零,讀一個就可以了。所以這個數要讀成十二萬零三十四。徒兒們,你們的數學都學得不太好,還得繼續努力呀,真經暫時不能傳給你們呀!」
『肆』 有趣的數學小故事(50字數
1、蒲豐試驗
一天,法國數學家蒲豐請許多朋友到家裡,做了一次試驗.蒲豐在桌子上鋪好一張大白紙,白紙上畫滿了等距離的平行線,他又拿出很多等長的小針,小針的長度都是平行線的一半.蒲豐說:「請大家把這些小針往這張白紙上隨便仍吧!」客人們按他說的做了。
蒲豐的統計結果是:大家共擲2212次,其中小針與紙上平行線相交704次,2210÷704≈3.142。蒲豐說:「這個數是π的近似值。每次都會得到圓周率的近似值,而且投擲的次數越多,求出的圓周率近似值越精確。」這就是著名的「蒲豐試驗」。
2、數學魔術家
1981年的一個夏日,在印度舉行了一場心算比賽。表演者是印度的一位37歲的婦女,她的名字叫沙貢塔娜。當天,她要以驚人的心算能力,與一台先進的電子計算機展開競賽。
工作人員寫出一個201位的大數,讓求這個數的23次方根。運算結果,沙貢塔娜只用了50秒鍾就向觀眾報出了正確的答案。而計算機為了得出同樣的答數,必須輸入兩萬條指令,再進行計算,花費的時間比沙貢塔娜要多得多。
這一奇聞,在國際上引起了轟動,沙貢塔娜被稱為「數學魔術家」。
3、八歲的高斯發現了數學定理
德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。高斯在還不會講話就自己學計算,在三歲時有一天晚上他看著父親在算工錢時,還糾正父親計算的錯誤。
長大後他成為當代最傑出的天文學家、數學家。他在物理的電磁學方面有一些貢獻,現在電磁學的一個單位就是用他的名字命名。數學家們則稱呼他為「數學王子」。
他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。
這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。
「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。
教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。
還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」
老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。
可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」
數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?
高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。